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Abstract

Based on the complex potential approach\ the two!dimensional problems in a piezoelectric material
containing an elliptic hole subjected to uniform remote loads are studied[ The explicit\ closed!form solutions
satisfying the exact electric boundary condition on the hole surface are given both inside and outside the
hole[ When the elliptic hole degenerates into a crack\ the _eld intensity factors are obtained[ It is shown that
the stress intensity factors are the same as that of isotropic material\ while the electric displacement intensity
factor depends on both the material properties and the mechanical loads\ but not on the electric loads[ In
other words\ the uniform electric loads have no in~uence on the _eld singularities[ It is also shown that the
impermeable crack assumption used previously to simply the electric condition is not valid to crack problems
in piezoelectric materials[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

For decades\ piezoelectric materials have found wide application in the electronic and elec!
tromechanical industries[ These materials\ however\ have a disadvantage such as brittleness[ Thus
the problems on fracture mechanics of piezoelectric materials have received much attention in the
last few years[ A wealth of theoretical results have been presented by Parton "0865#\ Deeg "0879#\
Pak "0889#\ Sosa and Pak "0889#\ Suo et al[ "0881#\ Wang "0881#\ Sosa "0881\ 0882#\ Pak and Tobin
"0882#\ Park and Sun "0884#\ Beom and Atluri "0885#\ Gao and Barnett "0885#\ Yu and Qin "0885#\
Qin and Yu "0886#\ Zhong and Meguid "0886#\ and Zhao et al[ "0886a\ b#[ However\ it should be
noted that up to now\ the exact solution satisfying the real electric boundary is still quite limited[
This is because nearly all previous analyses mentioned above are based on an impermeable crack
assumption\ that is\ the crack faces are assumed to be impermeable to electric _eld\ hence the
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electric displacement vanishes inside the crack[ Using this assumption\ one will arrive at the
following results] the stress intensity factors are the same as ones of isotropic materials while
electric displacement intensity factor only depends on the electric load at in_nity[ Moreover\ it is
also found that the total energy release rate "Pak\ 0889^ Park and Sun\ 0884# is always negative
solely in the presence of electric loading[ As pointed out by Park and Sun "0884#\ this contradicts
available experiment observation[ Thus\ the validity of the impermeable crack assumption is
discussed by Pak and Tobin "0882#\ Hao and Shen "0883#\ Dunn "0883#\ Park and Sun "0884#\
Zhang and Tong "0885#\ Kogan et al[ "0885#\ and Sosa and Khutoryansky "0885#[

In fact\ the crack problems in a piezoelectric material should be considered as the electric
inclusion problems since the dielectric constant of the air or vacuum inside the crack is not equal
to zero[ This implies that when the loads are given at in_nity\ the electric displacement on the
crack faces is also given indirectly and is in general not equal to zero[ Consequently\ many
investigators tried to obtain the solutions of the crack problem by examining the corresponding
inclusions problem in a piezoelectric material[ Recently Sosa and Khutoryansky "0885# used the
series expansion method to address the plane problem of a transversely isotropic piezoelectric
medium with an elliptic hole[ Their results show that the electric displacement is constant when
uniform mechanical and electric loads are applied at in_nity[ Kogan et al[ "0885# studied the stress
and electric displacement _eld of a spherical inclusion in a transversely isotropic piezoelectric
material based on the complex potential[ As a special case\ they obtained the stress and electric
displacement of a penny!shaped crack\ and pointed out in the _rst time that the electric dis!
placement is constant and the stresses are equal to zero everywhere solely in the presence of electric
loading[ However\ it should be noted that since a lot of constant coe.cients are piled up in the
solutions given by Sosa and Khutoryansky "0885#\ Kogan et al[ "0885#\ it is not easy to reveal
some coupling relations between mechanical and electrical _elds[

In the present paper we examine the plane problem of an elliptic hole or crack in a transversely
isotropic piezoelectric solid subjected to uniform loads by using the Sosa and Khutoryansky|s
work "0885#\ and focus on developing a concise method[ As a result\ very simple solutions in the
form are obtained[ Through these solutions\ one can clearly see the coupling between mechanical
and electrical _elds[

1[ Basic formulation

Following Berlincourt et al[ "0853#\ the general equations governing the thee!dimensional theory
of piezoelectricity in the absence of body forces and free charges can be written as

oij � sijklskl¦`kijDk\ Ei � −`iklskl¦bikDk "0a\b#

sij\j � 9 Di\i � 9 "1a\b#

oij �
0
1
"uj\i¦ui\j#\ Ei � −fi "2a\b#

where i\ j\ k\ l � 0\ 1\ 2^ sij\ Di\ bij\ ui\ Ei and f are the components of stress\ electric displacement\
strain\ displacement\ electric _eld and electric potential\ respectively^ sijkl\ `kij and bik stand for
elastic constants\ piezoelectric constants\ and dielectric constants\ respectively^ and a comma
indicates partial derivative[
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For a transversely isotropic solid referred to a Cartesian coordinate system x\ y\ z\ assuming
that xÐy is the isotropic plane and z is the poling direction\ then the constitutive eqn "0# can be
simpli_ed as
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eqns "1#Ð"4# constitute a set of basic equations for the three!dimensional problems of transversely
isotropic piezoelectric media[ In general\ however\ it is very di.cult to analytically solve these
equations due to the mathematical complexities[ In order to explicitly study the electromechanical
interaction\ we only consider a special plane problem in this paper[ If the plane of analysis is
chosen to be the xÐy plane\ it is clear from eqns "3# and "4# that the inplane electric _elds couple
only with the out!of!plane elastic _elds[ This is a so!called antiplane strain problem "Pak\ 0889^
Zhang and Tong\ 0885^ Zhong and Meguid\ 0886#[ A more complete state of electromechanical
interaction can be observed if the plane of analysis is chosen to be the xÐz plane or the yÐz plane[
In the present work we choose the former\ i[e[\ the plane strain problem in the xÐz plane is
considered for the study of plane electromechanical phenomena[ Moreover\ for the purpose of
comparison with previous works "Sosa\ 0880\ 0881^ Sosa and Khutoryansky\ 0885#\ we further
assume that

oyy � ozy � oxy � Ey � 9

and rename the coordinates] x : x0\ z : x1[ In this case eqns "3# and "4# can _nally be simpli_ed
as "Sosa\ 0880#

8
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a00 � s00−
s1
01

s00

\ a01 � s02−
s01s02

s00

\ a11 � s22−
s1
02

s00

\ a22 � s33

b10 � 00−
s01

s001 `20\ b11 � `22−
s02

s00

`20\ b02 � `04\ d00 � b00\ d11 � b22¦
`1

20

s00

Now we have reduced a three!dimensional problem to a two!dimensional one governed by eqns
"5#\ "6#\ "1# and "2#[ Following Sosa "0880#\ the _eld solutions for the two!dimensional problem
can be expressed\ respectively\ as

ðs11\ s01\ s00Ł � 1 Re s
2

k�0

ð0\−mk\ m1
kŁfk"zk# zk � x0¦mkx1 "7#

ðu0\ u1Ł � 1 Re s
2

k�0

ðpk\ qkŁ8k"zk#\ Im mk × 9 "8#

ðE0\ E1Ł � 1 Re s
2

k�0

kkð0\ mkŁfk"zk# "09#

ðD0\ D1Ł � 1 Re s
2

k�0

lkðmk\−0Ł8k"zk# "00#

f"zk# � −1 Re s
2

k�0

kk8k"zk#

pk � a00m
1
k¦a01−b10lk\ qk � "a01m

1
k¦a11−b11lk#:mk

lk � −
"b10¦b20#m1

k¦b11

d00m
1
k¦d11

\ kk � "b02¦d00lk#mk\ fk"zk# � d8"zk#:zk "01#

where Re and Im denote the real and imaginary part^ mk are distinct complex parameters to be
determined by the characteristic equation "Sosa\ 0880#\ and 8k"zk# are the three complex potentials
to be determined[

To _nd 8k"zk#\ one can use the following boundary conditions]

1 Re s
2

k�0

8k"zk# � −g
s

9

t1s ds "02#

1 Re s
2

k�0

mk8k"zk# � g
s

9

t0s ds "03#

1 Re s
2

k�0

lk8k"zk# � g
s

9

Dn ds "04#

in which t0s and t1s represent the x0 and x1 components of the force\ respectively^ s is the arc!length
on the boundary^ Dn is the normal component of electric displacement[
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Fig[ 0[ An elliptic hole in a piezoelectric solid subjected to uniform loads at in_nity[

For later use\ we introduce the following matrix notation]

A � &
0 0 0

m0 m1 m2

l0 l1 l2
'

It can be proved that A is nonsingular when mk are distinct[ Below\ we denote the inverse of A by

L � "Lkj#2×2 � A−0

then we have the invertibility relation]

s
2

k�0

AikLkj � d9
ij "05#

where d9
ij � 9 for i� j or d9

ij � 0 for i � j[

2[ The solution to an elliptic hole

As in Sosa "Sosa\ 0880^ Sosa and Khutoryansky\ 0885#\ we consider the two!dimensional
problem in a transversely isotropic solid containing an elliptic hole\ with semi!axes a and b directed
along x0! and x1!axes\ respectively "see Fig[ 0#[ The uniform stress s�

00\ s�
01\ s�

11 and electric dis!
placement D�

0 \ D�
1 are given at in_nity[ In addition\ the hole is assumed to be free of forces and

external charges\ but to be _lled with homogeneous air[

2[0[ Field solutions inside the hole L

Following Sosa and Khutoryansky|s study "0885#\ we assume that the electric potential\
f9"x0\ x1#\ inside L is of the following form]

f9"x0\ x1# � −e0x0−e1x1 "06#

where e0 and e1 are two real constants[
From eqn "06#\ the electric _eld components "E9

0\ E9
1# and the electric displacement components

"D9
0\ D9

1# inside L can be expressed as]
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E9
0 � −

1f9

1x0

� e0\ E9
1 � −

1f9

1x1

� e1\

D9
0 � o9E

9
0\ D9

1 � o9E
9
1 "07aÐd#

where o9 is the dielectric constant air inside the hole[

2[1[ Field solutions in the material

For this problem\ the complex potential in the material can be written as

8k"zk# � Bkzk¦8k9
"zk# "08#

where 8k9
"zk# is a holomorphic function outside Lk in the zk!plane "Lk is obtained from L in z!plane

by the a.ne transformation] zk � x0¦mkx1# up to in_nity "zk � �# and 8k9
"�# � 9^ Bk are complex

constants to be determined from the far _eld loading conditions "Sosa\ 0880#[
Obviously the _rst term on the right of eqn "08# stands for the complex potential of an in_nite

piezoelectric medium without hole subjected to the uniform loads at in_nity[ Using eqns "02#Ð"04#
and noting that in this case\ the electro!elastic _elds in the piezoelectric medium are the same
everywhere as those applied at in_nity\ one has on any arc!length that

1 Re s
2

k�0

Bkzk � −g
s

9

t�1s ds "19a#

1 Re s
2

k�0

mkBkzk � g
s

9

t�0s ds "19b#

1 Re s
2

k�0

lkBkzk � g
s

9

D�
n ds "19c#

where t�0s\ t�1s and D�
n represent the components of the force and electric displacement in a pie!

zoelectric medium without hole when the medium is subjected to the remote uniform loads\ and it
is easy to prove that these components are related to the remote loads through the following
equations

−g
s

9

t�1s ds � −g
s

9

s�
01 dx1−s�

11 dx0

g
s

9

t�0s ds � g
s

9

s�
00 dx1−s�

01 dx0

g
s

9

D�
n ds � g

s

9

D�
0 dx1−D�

1 dx0

On the hole surface\ the boundary conditions are
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gL

t1s ds � 9

gL

t0s ds � 9

gL

Dn ds � gL

D9
n ds � gL

D9
0 dx1−D9

1 dx0

f � f9 "10aÐd#

and there are the following relations]

x0 � a con u\ x1 � b sin u\con u �
0
1 0s¦

0
s1\ sin u �

i
1 0

0
s

−s1\ du �
ds

is
"11aÐe#

where s � exp "iu#\ u is the angle measured over a unit circle in counter!clockwise direction[
Substituting eqn "11# into eqn "10c# yields

gL

D9
n ds � −

0
1 $aD9

1 0s¦
0
s1¦ibD9

0 0s−
0
s1% "12#

Substituting eqns "08# and "10aÐc# into eqns "02#Ð"04#\ and using eqns "19# leads to

−gL

t�1s ds¦1 Re s
2

k�0

8k9
"zk# � 9

gL

t�0s ds¦1 Re s
2

k�0

mk8k9
"zk# � 9

gL

D�
n ds¦1 Re s

2

k�0

lk8k9
"zk# � gL

D9
n ds\ on L "13aÐc#

where

−gL

t�1s ds � −gL

s�
01 dx1−s�

11 dx0

gL

t�0s ds � gL

s�
00 dx1−s�

01 dx0

gL

D�
n ds � gL

D�
0 dx1−D�

1 dx0 "14aÐc#

Substituting eqn "11# into eqn "14# results in

−gL

t�1s ds �
0
1 $as�

11 0s¦
0
s1¦ibs�

01 0s−
0
s1%
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gL

t�0s ds � −
0
1 $as�

01 0s¦
0
s1¦ibs�

00 0s−
0
s1%

gL

D�
n ds � −

0
1 $aD�

1 0s¦
0
s1¦ibD�

0 0s−
0
s1% "15aÐc#

Let us now introduce the following mapping function zk"zk#]

zk"zk# � Rk"zk¦mkz
−0
k #\ Rk �

a−mkb
1

\ mk �
a¦mkb
a−mkb

"16aÐc#

which transforms the exterior of the elliptic Lk in the zk!plane into the exterior of a unit circle g\
which is described by zk � s\ in the complex plane zk\ and then substitute eqns "12#\ "15# and "16#
into eqn "13#\ we have

1 Re s
2

k�0

Fk9
"s# � −

0
1 $as�

11 0s¦
0
s1¦ibs�

01 0s−
0
s1%

1 Re s
2

k�0

mkFk9
"s# �

0
1 $as�

01 0s¦
0
s1¦ibs�

00 0s−
0
s1%

1 Re s
2

k�0

lkFk9
"s# �

0
1 $a"D�

1 −D9
1# 0s¦

0
s1¦ib"D�

0 −D9
0# 0s−

0
s1% "17aÐc#

where a notation Fk9
"zk# � 8k9

ðzk"zk#Ł is introduced[
Multiplying both sides of eqn "17# by ds:"s−zk# and integrating over the whole unit circle

"Muskhelishvili\ 0864#\ we obtain

s
2

k�0

Fk9
"zk# � −

0
1

ðas�
11−ibs�

01Łz−0
k

s
2

k�0

mkFk9
"zk# �

0
1

ðas�
01−ibs�

00Łz−0
k

s
2

k�0

lkFk9
"zk# �

0
1
ða"D�

1 −D9
1#−ib"D�

0 −D9
0#Łz−0

k "18aÐc#

Solving eqn "18# yields

8k9
"zk# � ak0

z−0
k "zk# "29#

where

ak0
� s

2

j�0

LkjFj

F � 0
1
ð−"as�

11−ibs�
01#\ "as�

01−ibs�
00#\ a"D�

1 −D9
1#−ib"D�

0 −D9
0#ŁT "20a\b#
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On the other hand\ substituting eqns "01# together with eqns "08#\ "29#\ and "06# together with "11#
into "10d#\ we have\ with a little arrangement\ that

s1ck¦ck � 9 "21#

where

ck � 1 s
2

k�0

"kkBkRkmk¦kkBkRk¦kkak0
#−"ae0−ibe1# "22#

Inserting eqns "20# and "16b\c# into eqn "22#\ and using eqn "09# leads to

ck � aE�
0 ¦ibE�

1 ¦ða"D�
1 −D9

1#−ib"D�
0 −D9

0#Ł s
2

j�0

kjLj2¦1 s
2

k�0

s
1

j�0

kkLkjFj−"ae0−ibe1# "23#

Since all the points on the unit are the root of eqn "21#\ this implies that ck � 9\ namely

Re ck � 9\ Im ck � 9 "24a\b#

Substituting eqn "23# into eqn "24# yields

aE�
0 ¦a"D�

1 −D9
1#CR¦b"D�

0 −D9
0#CI¦1 Re s

2

k�0

s
1

j�0

kkLkjFj−aE9
0 � 9

bE�
1 ¦a"D�

1 −D9
1#CI−b"D�

0 −D9
0#CR¦1 Im s

2

k�0

s
1

j�0

kkLkjFj¦bE9
1 � 9 "25a\b#

where

cR � Re s
2

j�0

kjLj2\ cI � Im s
2

j�0

kjLj2 "26a\b#

Using eqn "07c\d#\ eqn "25# can be reduced to

"D�
1 −D9

1#ao9CR¦"D�
0 −D9

0#"a¦bo9#CI � b0

"D�
1 −D9

1#"b−ao9#cI¦"D�
0 −D9

0#bo9cR � b1 "27a\b#

where

b0 � aD�
0 −ao9E

�
0 −1o9 Re s

2

k�0

s
1

j�0

kkLkjFj

b1 � bD�
1 ¦bo9E

�
1 ¦1o9 Im s

2

k�0

s
1

j�0

kkLkjFj

Solving eqn "27#\ one obtains

D�
1 −D9

1 �
bo9cRb0−"a¦bo9#cIb1

D
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D�
0 −D9

0 �
ao9cRb1−"b−ao9#cIb0

D
"28a\b#

with

D � abo9c
1
R−"a¦bo9#"b−ao9#c1

I "39#

Substituting eqns "29# and "20a# into "08#\ and using "16# leads to

8k"zk# � Bkzk¦ðLk0
F0¦Lk1

F1¦Lk2
F2Ł

zk−zz1
k−"a1¦m1

kb
1#

a¦imkb
"30#

in which Fj is determined by eqns "20b# and "28#[
Taking derivative in eqn "30# with respect to zk results in

fk"zk# � Bk¦ðLk0
F0¦Lk1

F1¦Lk2
F2Ł

0
a¦imkb $0−

zk

zz1
k−"a1¦m1

kb
1#% "31#

3[ The solution to a crack

3[0[ The _eld solutions inside the crack

When the elliptic hole degenerate into a crack\ let b � 9\ then eqns "39# and "28a# become

D � a1o9c
1
I

D�
1 −D9

1 �

−1ao9cI Im s
2

k�0

s
1

j�0

kkLkjFj

D
"32a\b#

Inserting eqns "20b#\ "26b# and "32a# into eqn "32b# yields

D�
1 −D9

1 �

s�
11 Im s

2

k�0

kkLk0
−s�

01 Im s
2

k�0

kkLk1

Im s
2

k�0

kkLk2

"33#

Noting that S2
k�0 kkLk1

is real "see Appendix#\ eqn "33# becomes

D�
1 −D9

1 �

Im s
2

k�0

kkLk0

Im s
2

k�0

kkLk2

s�
11 "34#

Equation "34# shows that the normal component of electric displacement on the crack faces is not
equal to zero\ which depends on both mechanical loads and electric loads[
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On the other hand\ letting b � 9 in eqn "25a# leads to

E9
0 � E�

0 −Re s
2

k�0

kkðLk0
s�

11−Lk1
s�

01−Lk2
"D�

1 −D9
1#Ł "35#

in which D�
1 −D9

1 is determined by eqn "34#[
Using eqn "07#\ one can obtain the other two components

E9
1 �

D9
1

o9

\ D9
0 � o9E

9
0 "36#

3[1[ The _eld solutions in the piezoelectric material

Letting b � 9 in eqns "31# and "20b# gives

fk"zk# � Bk−
fk9

zk

1zz1
k−a1

¦
0
1

fk9
"37#

where

fk9
� −ðLk0

s�
11−Lk1s

�
01−Lk2

"D�
1 −D9

1#Ł "38#

Equation "37# together with eqns "38# and "34# shows that fk"zk# is independent of o9[ This means
the _eld solutions in the material are not related to o9[

According to the convectional de_nition\ the _eld singularity coe.cients at the crack tip\ x0 � a\
can be expressed as

"k0\ k1\ kD# � z1p lim
x0:a

"x0−a#0:1"s11\ s01\ D1# "49#

Substituting eqns "7# and "00# into "49#\ one obtains

"k0\ k1\ kD# � 1z1p Re lim
x0:a

"x0−a#0:1 s
2

k�0

fk"x0#"0\−mk\−lk# "40#

Substituting eqns "37# and "38# into eqn "40#\ and using eqn "05# gives

"k0\ k1\ kD# � zpa"s�
11\ s�

01\ D�
1 −D9

1# "41#

If assuming that D9
1 � 9 in eqn "41#\ one has

kD � zpaD�
1

which is the result obtained previously according to the impermeable crack assumption[ Never!
theless\ inserting eqn "34# into "41# yields

kD �

Im s
2

k�0

kkLk0

Im s
2

k�0

kkLk2

k0 "42#
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Equation "41# and "42# show that the stress intensity factors in a piezoelectric material are the
same as that of a common material while the electric displacement intensity factor depends on
material properties and the mechanical loads\ but not on the electric loads[ Especially when there
are only electric loads at in_nity\ one can see from eqns "37#\ "38# and "34# that

fk"zk# � Bk "43#

Equation "43# implies that in this case\ the stress _eld vanishes and the electric _eld is uniform in
the material[ Inside the crack\ the electric _eld components are

E9
0 � E�

0 \ E9
1 �

D9
1

o9

4[ Conclusions

The complex potential method is used to analyze the plane problem in piezoelectric materials
with an elliptic hole or crack[ Exact solutions of the _eld intensity factors are presented[ The
solutions are very concise in form and satisfy the real electric boundary condition[ It is shown that
the stress intensity factors are the same as those obtained based on the impermeable crack
assumption\ while the electric displacement intensity factor is di}erent from the previous results\
it depends on both material properties and the mechanical loads\ but not the electric loads[
Especially when the mechanical loads vanish at in_nity\ the solution in this case is given by the
uniform electric _eld and zero stresses everywhere in the material[ In summary\ the following
conclusions may be drawn]

"0# The normal component of electric displacement on the crack faces is not equal to zero\ which
depends on the electric loads\ mechanical loads and material properties[

"1# The electric loads have no in~uence on the _eld singularities[
"2# The singularity of electric displacement at crack tips depends on that of the stress[
"3# The _eld solution in piezoelectric materials are not related to the dielectric constant\ o9\ of air

inside a crack\ i[e[ o9 has in~uence only on the electric _eld inside the crack[
"4# The impermeable crack assumption is not valid in solving the fracture problems in piezoelectric

materials[

Appendix

s
2

k�0

kkLk1
� s

2

k�0

"b02¦d00lk#mkLk1

� b02 s
2

k�0

mkLk1
¦d00 s

2

k�0

lkmkLk1
"A0#

where
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L � ðLkjŁ �
0
D &

m1l2−m2l1 l1−l2 m2−m1

m2l0−m0l2 l2−l0 m0−m2

m0l1−m1l0 l0−l1 m1−m0
' "A1#

D � "l1−l2#m0¦"l2−l0#m1¦"l0−l1#m2 "A2#

It is easy to con_rm from eqn "A1# that]

s
2

k�0

mkLk1
� 0 "A3#

s
2

k�0

lkmkLk1
�

0
D

ð"m0l0l1−m0l0l2#¦"m1l1l2−m2l1l2#−"m1l1l0−m2l2l0#Ł "A4#

For transversely isotropic piezoelectric media\ Sosa and Khutoryansky|s study "0885# shows that

Re m0 � Im l0 � 9\ m2 � −m1\ l2 � l1 "A5#

Using eqn "A5#\ eqns "A4# and "A2# can be reduced to

s
2

k�0

lkmkLk1
�

0
D

ð"m0l1l1¦m0l0l1#¦"m1l1l1¦m1l1l1#−"m1l1l0¦m1l1l0#Ł "A6#

D � "l1m0¦l1m0#¦"l1m1¦l1m1#−"l0m1¦l0m1# "A7#

From eqns "A0#\ "A3#\ "A6# and "A7#\ one _nds that S2
k�0 kkLk1

is real[
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